Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms

Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms

4.11 - 1251 ratings - Source

Artificial neural networks can mimic the biological information-processing mechanism in - a very limited sense. Fuzzy logic provides a basis for representing uncertain and imprecise knowledge and forms a basis for human reasoning. Neural networks display genuine promise in solving problems, but a definitive theoretical basis does not yet exist for their design. Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms integrates neural net, fuzzy system, and evolutionary computing in system design that enables its readers to handle complexity - offsetting the demerits of one paradigm by the merits of another. This book presents specific projects where fusion techniques have been applied. The chapters start with the design of a new fuzzy-neural controller. Remaining chapters discuss the application of expert systems, neural networks, fuzzy control, and evolutionary computing techniques in modern engineering systems. These specific applications include: direct frequency converters electro-hydraulic systems motor control toaster control speech recognition vehicle routing fault diagnosis Asynchronous Transfer Mode (ATM) communications networks telephones for hard-of-hearing people control of gas turbine aero-engines telecommunications systems design Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms covers the spectrum of applications - comprehensively demonstrating the advantages of fusion techniques in industrial applications.This book presents specific projects where fusion techniques have been applied. The chapters start with the design of a new fuzzy-neural controller.


Title:Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms
Author:Lakhmi C. Jain, N.M. Martin
Publisher:CRC Press - 1998-11-17
ISBN-13:

Continue

You Must CONTINUE and create a free account to access unlimited downloads & streaming