Mathematical Methods of Quantum Optics

Mathematical Methods of Quantum Optics

4.11 - 1251 ratings - Source

This book provides an accessible introduction to the mathematical methods of quantum optics. Starting from first principles, it reveals how a given system of atoms and a field is mathematically modelled. The method of eigenfunction expansion and the Lie algebraic method for solving equations are outlined. Analytically exactly solvable classes of equations are identified. The text also discusses consequences of Lie algebraic properties of Hamiltonians, such as the classification of their states as coherent, classical or non-classical based on the generalized uncertainty relation and the concept of quasiprobability distributions. A unified approach is developed for determining the dynamics of a two-level and a three-level atom interacting with combinations of quantized fields under certain conditions. Simple methods for solving a variety of linear and nonlinear dissipative master equations are given. The book will be valuable to newcomers to the field and to experimentalists in quantum optics.This book provides an accessible introduction to the mathematical methods of quantum optics.


Title:Mathematical Methods of Quantum Optics
Author:Ravinder R. Puri
Publisher:Springer Science & Business Media - 2001-01-18
ISBN-13:

Continue

You Must CONTINUE and create a free account to access unlimited downloads & streaming